Paradox extra credit sets for Math 70

          Paradox: A Problem

 

 

 

Define “Russell’s set” R to be the set of all sets, and only those sets, which do not contain themselves:       

R       =       { x | x Ï  x }

In general:                    x Î R           =     x Ï x

and therefore:               R Î R          =     R Ï R .

 

If RÎR  = true, then RÎR = false.

If RÎR  = false, then RÎR = true.

RÎR  can be neither true nor false. A paradox!

 

Bertrand Russell illustrated this paradox with a story about the barber of a Spanish village. Being the only barber in town, he boasted that he shaves all those — and only those — who do not shave themselves.

 

Therefore  barber shaves man       =       man does not shave man

Therefore  barber shaves barber   =       barber does not shave barber

       Therefore the barber shaves himself just as much as he does not shave himself. That’s a paradox.

 

Exercise, 1 point each: Derive paradoxes from these:

 

The Watchmen watch all those, and only those, who do not watch themselves.

The Counsellor counsels all those, and only those, who do not counsel themselves.

The Judge judges all those, and only those, who do not judge themselves.

The Jester laughs at all those, and only those, who do not laugh at themselves.


 


 

********************

 

Kleenean Logic: A Solution

 

 

 

To solve the problem of paradox, let there be a third logic value; call it ‘I’ for ‘intermediate’ or ‘imaginary’; and let it equal its own negation:

I       =    ~  I

Meantime let negation act the same as usual on the Boolean values ‘true’ and ‘false’:

~ T    =     F        ;        ~ F    =    T

 

In Kleenean logic, Ú (“or”) is the maximum operator, while Ù (“and”) is the minimum operator, on this linear order:

 

F       <       I        <       T

 

x  Ù y  =  x        iff        x Ú y  = y      iff       x < y

 

The Kleenean operators follow these four axioms:

 

Commutativity          x Ùy  =  yÙx   ;    xÚy = yÚx

Identities                      x Ù T  =  x Ú F  =  x

Dominance                  x Ù F  =  F   ;   x Ú T   =   T

Recall                           x Ù x  =  x Ú x  =  x

 

Those identities imply these truth tables:

 

x:  ~x    Ù  y:       Ú  y: 

             F  I  T      F  I  T 

 

F    T    F  F  F     F  I  T 

I     I     F  I  I        I  I  T 

T    F    F  I  T      T  T  T 

 

Call a function “Kleenean” if it can be defined from Kleenean “and”, “or”, “not”, and the three values F, I, T. They include:

 

x nor y                 =       ~ (x Ú y)

x nand y              =       ~ (x Ù y)

x Þ y                  =       (~ x) Ú y

x iff y                  =       (x Þ y) Ù (y Þ x)

x xor y                 =       (x Ù ~y) Ú (y Ù ~x)

Dx                       =       x Þ x         =    x iff x     =   x Ú ~x

dx                        =       x minus x    =   x xor x   =   x Ù ~x

x ÚB y                  =       (x Ú y)  Ù   Dx  Ù  Dy 

x ÙB y                  =       (x Ù y)  Ú   dx  Ú  dy

x min y                =       (x Ù y) Ú (y Ù I) Ú (I Ù x)

 

Exercise, 1 point each: Make truth tables of these logic functions.

 

 

          Exercise, 1 point each: find all solutions to these three systems of equations:

 

          x       =       ~x

 

 

          x       =       ~y

          y       =       ~x

 

 

          x       =       y nor z

          y       =       z nor x

          z        =       x nor y

 

 

Comments

Popular posts from this blog

Looking-Glass Time

Gabriel Scandal Rocks Vatican, Mecca

Cat Waste Explained